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A new method is proposed for the rarefied gas flow analysis by the direct simulation Monte 
Carlo (DSMC) method in a multidimensional flow. In this method, a body-fitted coordinate 
system is used and therefore the DSMC method can be applicable to a flow-field analysis 
around the body of arbitrary configuration. Through an application to the rarefied supersonic 
flow around the circular cylinder, the present method was found to be reliable and time-saving 
in computation time. 0 1989 Academic Press, Inc. 

I. INTRODUCTION 

Recently the aerodynamics about a vehicle in a rarefied flow regime attracted 
much attention in relation to the aero-assisted orbital transfer vehicle (AOTV) 
and/or the reentry vehicle [l]. In a simulation of a rarefied gas flow, the direct 
simulation Monte Carlo (DSMC) is a powerful numerical simulation method [2]. 
An application of DSMC to vehicle aerodynamics, however, has been restricted to 
a vehicle of simple geometry since an implementation of a boundary condition at 
a vehicle surface of complex geometry into the simulation program is a rather 
complex problem. Furthermore, the simulation program thus obtained must be 
modified corresponding to the modification of the vehicle configuration. 

In a numerical simulation of a continuum flow in which the Navier-Stokes equa- 
tion or the Euler equation is solved, the body-fitted coordinate system is employed 
so that the numerical simulation program can be applicable to a flow-field analysis 
around a body of arbitrary configuration [3]. In this method, the flow field is 
calculated at a rectangular space which is transformed from the physical space 
around a body, i.e., at the body-fitted coordinate system. Hence the flow field 
around the body of arbitrary configuration can be easily calculated when the body- 
fitted coordinate system is determined. In the present paper, we propose the DSMC 
method using the body-fitted coordinate system. This method is shown to overcome 
the above mentioned problem. That is, the present method makes it possible to 
analyse the rarefied gas flow around the vehicle of arbitrary shape by generating a 
body-fitted coordinate. Furthermore, it is shown that the computation time is much 
reduced in comparison with the standard method. 
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2. DSMC METHOD WITH BODY-FITTED COORDINATE 

In the present paper, we consider 2-dimensional flow for simplicity although the 
extension to 3-dimensional flow is straightforward. In 2-dimensional flow, the 
body-fitted coordinate system (5, q) is introduced using 

(1) 

which transforms the rectangular region in the (5, q) space to the physical space 
around the body in the (x, y) coordinate. In this transformation, a line of 
q = constant, for example, is chosen to coincide with the body surface. Among a 
variety of transformations, the O-type grid is shown schematically in Fig. 1 in which 
the body surface coincides with a line of q = 0. 

In the DSMC method, the physical space in which the simulation is conducted 
must be divided into cells. Since the direct discretization in the physical space is a 
complex problem, we consider this in the (5, q) space at first. The discretization of 
the (r, q) space can be conducted by discretizing c and q coordinates at equal inter- 
vals of d5 and A?, respectively. Hence the cells in the (5, q) space are rectangular 
with a uniform size of A< x Aq. Corresponding to this discretization, the discretiza- 
tion in the (x, v) space is done automatically. The cells in the (x, y) space cannot 
be rectangular in general. 

In general, it is difficult to obtain the body-fitted coordinate system analytically 
for an arbitrary body configuration. Hence we assume that the transformation 
defined by Eq. (1) is obtained numerically; i.e., it is only defined at the discrete 
points on the ([, II) space. The body-fitted coordinate system defined numerically 
can be easily obtained, for example, by solving the Poisson equation with 
appropriate boundary conditions [3]. 

In the DSMC method, the particles move around in the region where the simula- 
tion of the flow field is conducted. Two types of the coordinate system are possible 
for describing the location of the particles; i.e., the (x, y) and (5, q) coordinate 
system. The standard method employs the (x, y) coordinate system. We consider 
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FIG. 1. Schematic figure for the transformation between the body-fitted coordinate system around a 
circular body and the rectangular coordinate system. 
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merits and demerits between both methods paying attention to the algorithm of the 
DSMC method. 

The DSMC method comprises two different processes : (1) the collisions between 
the particles due to the intermolecular forces are counted (step I) and (2) the par- 
ticles move freely (i.e., not being affected by intermolecular forces) (step II). In the 
step I of the DSMC method, the collisions are counted among the particles which 
reside in the same cell. To do this, the particle in each cell must be identified. This 
identification can be easily conducted in the (5, q) space, while it is a complicated 
problem in the (x, y) space [Z]. That is, in the (<, q) space, the cell in which the 
particle resides can be easily identified by only dividing the c and ‘1 coordinates of 
the particles by the cell size A< and Ar] in the (5, q) space, respectively. In the (x, y) 
space, however, all the cells must be checked whether the particle resides or not 
until the cell in question is identified. In general, this process is more time-consum- 
ing in computation although several methods were proposed to solve this defect 
[2]. Hence, the (5, q) space is preferable for a coordinate system describing the 
particle location. Once the cells are identified for all the particles, the collision 
process can be counted in a manner similar to the standard method. 

In step II of the DSMC, the particle moves under no influence of the inter- 
molecular force according to the following equations ; 

dx 
~=VX, 

dy 
~=Vy, 

(2) 

if there is no external force. Here v, and v, are the particle velocities in the x and 
y components. In the (5, q) space, these equations are rewritten as 

(3) 

where the suffices of < and q represent the derivatives by them. The motion of the 
particles in the (5, q) space can be determined by integrating Eq. (3). Although it 
is easy to integrate Eq. (2) (since the right-hand side of Eq. (2) is constant), the 
integration of Eq. (3) is rather complex since the right-hand side of Eq. (3) depends 
on the local (5, q) coordinate. 

We must note here that if the transformation defined by Eq. (1) is determined 
analytically, it is of no use to integrate Eq. (3) in order to find the (5, q) coordinate 
of the particle. Instead, we can get the (5, q) coordinate by using the analytical 
transformation Eq. (1) after the movement by Eq. (2). On the other hand, when the 
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transformation is defined only numerically, it is not a good method to determine 
the (5, q) coordinate through the transformation (1). In this case, the (5, q) coor- 
dinate of the particle must be interpolated from the transformations of the nearest 
grid points. Hence the cell (in the (x, y) coordinate) in which the particle resides 
must be identified in order to employ the transformation (1). This process is more 
time-consuming in computation. Therefore, we can conclude that Eq. (3) must be 
integrated in order to obtain the (<, q) coordinate of the particle. 

The boundary condition must be specified for the particles which move into the 
boundary of the computation (the body surface and/or the boundary of the area in 
which the simulation is conducted). Hence, for the particle which comes near the 
body surface or the boundary of the calculation region, it is important to know 
whether the particle hits on the body surface or goes out from the calculation 
region during the freely moving process (i.e., step II of the DSMC method). 
Apparently it is easy to know whether the particles enter into the boundary if the 
geometry of the boundary is simple. Especially, if the boundary is represented by 
a line in which some coordinate is constant, this process can be more easily conduc- 
ted. In this view point, the (5, v]) coordinate system is preferable in comparison with 
the (x, JJ) coordinate system, since four boundaries of a rectangular region in the 
(5, q) coordinate system coincide with all the boundaries of the region in the (x, y) 
coordinate system. On the other hand, the boundaries of the region in the (x, y) 
coordinate system are curved lines in general. Therefore it is a complex problem to 
check the particles which enter into the boundary in the (x, y) space. Besides the 
boundary condition for the particles which hit on the body surface and/or go out 
from the calculation region, the boundary condition for the particles entering the 
calculation region is important. As for the particles of this category, the way to give 
the boundary condition is similar to the one in the standard method. That is, the 
particles are selected in accordance with the boundary condition and are moved 
into the calculation region by an appropriate time step. 

In the standard DSMC method, the movement of the particles is conducted 
according to Eq. (2) (i.e., in the (x, y) space). The integration of Eq. (2) is 
straightforward and simple. However, as noted above, the calculation step I is more 
time consuming. Furthermore, the way to give the boundary condition (i.e., at the 
surface of the body) is complex. In contrast to this, when the particle movement in 
the (5, q) space is employed, the calculation in step I is much easier and the way 
to give the boundary condition is rather simple, while the calculation for the par- 
ticle movement might be rather complicated. Considering these merits, we propose 
the method using the (<, q) coordinate system to represent the particle location. 

3. PARTICLE PUSHING TECHNIQUE 

The collisions in step I of the DSMC method are counted during the time inter- 
val of At, which is selected as CU, in general. Here z, is the collision time and a is 
a constant which is smaller than 1 but not so small. In step II of the DSMC 
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method. Eq. (3) must be integrated during the time interval At,, i.e., from a given 
time t” to the next time t” + At,. This integration must be done numerically, since 
the right-hand side of Eq. (3) depends on the (5, q) coordinate and is defined only 
numerically. The time step At, is not sutliciently small in general to maintain good 
accuracy in the numerical integration. Hence we employ a smaller time step Ati for 
integration of Eq. (3). The time step Ati is chosen to be sufficiently small in order 
to maintain good accuracy. While a variety of numerical integration methods are 
applicable, we employ here a simple difference form 

t k+l 

-r*=(wn-“vxJ4k, At; 

? 
k+l 

-‘Ik 

Ati = -(u, Y, - uyxe)/AI k, 

(4) 

where the superscript k represents the time step at the numerical integration. When 
Atj is chosen to be AtJK (K, integer), the coordinates cl and q at the time t”+ At, 
can be obtained by using 5, q values at t = t” as initial values and using Eq. (4) suc- 
cessively (i.e., K times). The right-hand side of Eq. (3) is a function of (r, q) ; i.e., the 
metrices xc, x,,, y,, and y, depend upon (5, q). Since these metrices are specified at 
each grid point in the (5, q) space, the values of the metrices are determined during 
the integration by interpolating from the values at the nearest grid points. The 
symbol lk in the right-hand side of Eq. (4) indicates that these terms are evaluated 
at (tk, vk). 

4. APPLICATION 

For an application of the present method, we consider the rarefied supersonic 
flow around a circular cylinder; i.e., the Mach number is 3.5 and the Knudsen 
number defined by n/D is 0.25. Here 1 is the mean free path and D the diameter 
of the cylinder. Hence the flow simulated is a supersonic flow in a transitional 
regime. 

Since the flow is symmetric, the calculation is conducted at the upper half plane 
in the (x, y) coordinate system. The calculation region in the (x, y) coordinate 
system and the cells in it are shown in Fig. 2, where s is the coordinate which starts 
from the body surface and directs along the stagnation line. The representative cell 
size is about L x I while the cells near the body are rather small. The time step At, 
is chosen as 0.257,. The hard sphere model is employed for the intermolecular 
potential. As for the boundary condition at the body surface, specular reflection of 
the particles is assumed for simplicity. As for the outer boundary condition, 
uniform in-flow is assumed. Initially, the uniform flow is set around the cylinder in 
a whole region. The calculation is conducted up to t = 252,. The total number of 
particles employed in the simulation is about 2000 and the ensemble average is 
taken over 80 simulation runs. 
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FIG. 2. Body-fitted coordinate system around a half-cylinder. 

Before going to the simulation result, we show the example of the time 
integration of Eq. (3) by the method noted in Section 3. In Fig. 3, the example of 
the particle path in the coordinate system depicted in Fig. 2 is shown. In each path, 
the particle starts from the point represented by the symbol + and its velocity is 
kept constant although the particle which hits the body is reflected from the body 
surface specularly. This example shows that the time integration of Eq. (3) is 
conducted quite accurately. 

Initially the flow is uniform. As time goes on, the body generates compression 
waves and a steady shock wave is formed in front of the body. At the time t = 252,, 
a quasi-steady flow is expected to be attained. In fact, a rather broad shock wave 
is formed in front of the body at ‘t = 25r, as shown in Fig. 4. This rather broad 

FIG. 3. Typical examples of time-integration of the particle path in (x, y) coordinates (a) and in 
(C, q) coordinates (b). 
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FIG. 4. Density contour around the cylinder in uniform flow in which the Mach number is 3.5. The 
results by the present method and the standard method are in (a) and (b), respectively. 

shock wave is a merged layer where the shock layer and the shock wave are 
merged. The density and pressure variations along the stagnation line represent the 
structure of the merged layer (see Fig. 5). Formation of the merged layer is a 
characteristic feature of a transition regime. In Fig. 6, the velocity field is depicted 
by a vector the length of which is proportional to the magnitude of the flow 
velocity. This figure shows tht deceleration along the stagnation line and the 
acceleration along the body surface takes place. The flow velocity near the surface 
suggests that sufficient slip appears on the surface. 

Throughout the figures from Fig. 4 to Fig. 6, the results by the present method 
and the standard method give good agreement, with only a slight difference. This 
difference is attributed to an insufficient average over the simulation runs. 

1 
b 
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FIG. 5. Density (a) and pressure (b) distribution along the stagnation line. Results by the present 
method and the standard method are represented by the symbols 0 and A, respectively. The density 
and the pressure in the uniform flow is represented by p,, and P,, respectively. 
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(a) 

FIG. 6. Velocity field around the cylinder in the uniform flow in which the Mach number is 3.5. The 
results by the present method and the standard method are in (a) and (b), respectively. 

As noted in Section 2, we can expect an economy of computation time in the pre- 
sent method in comparison to the standard method. This economy of computation 
time is expected from the effectiveness in selecting the cell in which the particle 
resides. As expected, the computation time is reduced to about $ the time that the 
standard method consumes. 

For another example of the present method,‘we consider the rarefied supersonic 
flow around a non-circular cylinder. This non-circular cylinder shown schematically 
in Fig. 7a is defined appropriately free form. The symmetric supersonic flow is 
assumed as shown in Fig. 7a. Since the flow is symmetric, the calculation is 

FIG. 7. Schematic figure for the non-circular cylinder (a), the body fitted coordinate system around 
it (b), and the density contour around it in the uniform rarefied supersonic flow (c). The minimum and 
the maximum density which the contour lines represent are 1.2 x pa and 3.0 x pa, respectively. Here pa 
is the density in the uniform flow. 
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conducted at the upper half plane in the (x, y) coordinate system. The body fitted 
coordinate system around the body is shown in Fig. 7b. The conditions except the 
body shape are the same as the ones for the previous example. The density contour 
around the body is shown in Fig. 7c. The standing bow shock wave is formed in 
front of the body in a similar manner to the previous example. In the present 
method, we have assumed the numerical coordinate transformation; the transfor- 
mation defined at the discrete cell vertices. Hence the example shown in Fig. 7 is 
easily calculated by using the common program but changing the numerical data 
defining the transformation. 

5. CONCLUSIONS 

We have proposed a new method of DSMC in the multidimensional flow. In this 
method, the body-fitted coordinate system is used. As a result, the standard DSMC 
method is improved so that the DSMC method can be applicable to a flow-field 
analysis around the vehicle of arbitrary configuration. Furthermore, the present 
method is more time-saving in comparison with the standard method. 
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